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Abstract: In the present study, both anisotropy and magnetic field effects on bi-diffusive natural convection in a rectangular 
cavity filled with a porous medium saturated by a binary fluid are investigated analytically for fully developed flow regime. The 
cavity is heated isothermally by the sides and its horizontal walls are thermally insulated or conducted. The porous medium is 
anisotropic in permeability whose principal axes are oriented in a direction that is arbitrary to the gravity field. On the basis of the 
generalized Brinkman-extended Darcy model of newtonian fluids on steady flow through porous media, analytical expressions 
were obtained for the flow and thermal fields, the concentration of speaces, the average Nusselt and Sherwood numbers in terms 
of the Darcy number, the anisotropic permeability ratio, the orientation angle of the principal axes and the Hartmann number.  
The limiting case corresponding to pure porous media (Da→0) and pure fluid media (Da→∞) for the thermal conditions 
mentioned on the cavity completed these results in order to compare them to those obtained in the literature. It is found that, 
Nusselt and Sherwood numbers increase by increasing anisotropic parameters of the porous medium while increasing magnetic 
field magnitude greatly reduces the intensity of the flow and thus affects significantly heat and mass transfer. 
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1. Introduction 

In recent decades, diffusive double convection has received 
much attention from researchers. This interest is due to the 
multiple practical applications in various fields (thermal 
treatments of polluted soils; storage of radioactive waste; solar 
ponds; oceanography; geophysics, etc.). The diffusion of 
pollutants represents an interesting application of bi-diffusive 
convection. Indeed, from a local source of pollutant in the 
aquifer medium, the effects of the dispersion due to the 
average speed of the flow due to the thermal gradients tend to 
disperse the polluting agent through the porous layer and can 

thus affect the water bodies [1]. To this end, in an aquifer 
environment, convective movements contribute by 
homogenizing effects to the diffusion contaminants [2]. In this 
process, the soil, the interface between the various media, 
constitutes the porous medium, the seat of the transfer of heat 
and mass (pollutant particle) to these hydro-systems by the 
phenomenon of convection. Interest in double-diffusive 
convection in porous media began after Nield [3] investigated 
the stability of a horizontal porous layer, heated and salty from 
below, as well as a very detailed summary of the work carried 
out in the past is presented in the book by Nield and Bejan [4]. 
The problem of natural thermosolutal convection in a 
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horizontal and porous anisotropic cavity has been the subject 
of some research works. The Nusselt number is maximum 
when the Darcy number is sufficiently large according to 
Zheng and all [5]. Smail BENISSAAD and all [6] have shown 
that the control parameters greatly influence flow, heat 
transfer and mass. Akowanou in 2007 [7] studied convective 
transfer in porous cavities subjected to a transverse magnetic 
field, it appears that the application of a magnetic field 
considerably reduces the speed of the flow. In this study, we 

will look at the heat and mass transfer induced by 
thermosolutal convection in an anisotropic horizontal porous 
cavity in permeability and under the effect of the transverse 
external magnetic field. Abbas ATTIA [13] studied the 
suppression of thermosolutal instabilities by the action of a 
magnetic field with the geometry used a rectangular enclosure 
filled with an aqueous solution. The aim is to study the 
influence of the magnetic field and anisotropy on convective 
flow and the transfer of heat and mass. 

2. Nomenclature 

A geometric aspect ratio, L’/H’ 
a, b, c constants equation, (13) 
B applied magnetic field 
g gravity acceleration 
H ‘ cavity height, m 
Ha Hartmann number 
J’ current density 
K thermal conductivity 
K1, K2 permeabilities along the main axes �� Tensor (second order) of permeability 
Nu Nusselt number 
Sh Sherwood number 
P dimensionless pressure, (P’-P’0)H’2/�0 αp

2 

Le Lewis number, αp/D 
K* Permeability anisotropy ratio 
RT Rayleigh Darcy number- thermal 
C dimensionless concentration, (C’-C0) /△C* 

q′ constant heat flow (per unit area), W.m-2 △C* Characteristic concentration, j’H’/Dp; △T* Characteristic temperature, q’H’/kp 
t dimensionless time, t’αp /H’2 

N Ratio of volume forces, βc△C*/ βT△T* 

L cavity length 
T dimensionless temperature, (T’-T0)/△T* 

(u, v) dimensionless velocities in the directions Ox et Oy, (u’H’/αp, v’H’/αp) 
(x, y) Cartesian coordinates adimensional, (x’/H’, y’/H’) 
Lx length of the central region of the cavity 
Greek symbols 

αp thermal diffusivity of the saturated porous medium kp/(�C) 

(�c) heat capacity, W.K-1 

βT coefficient of thermal expansion, K-1 βc solutal expansion coefficient, kg.mol. L-1 

� dimensionless porosity, �’/� � kinematic viscosity of the fluid, m2.s-1 � heat capacity ratio (�C)p/(�C)f 
Indices and exhibitors 

0 reference state 
t Thermal 
c Solutale 
p Porous 
f Fluid 

3. Geometry and Mathematical Formulation 

We consider a rectangular cavity of height H "and length L". Vertical walls are subjected to uniform flows of heat and space 
while horizontal walls are adiabatic and waterproof. This enclosure is filled with a porous medium saturated with a binary fluid. 
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Figure 1. Physical model and coordinate axes. 

The regime considered here is the steady state with flow developed in the porous channels. The equations of continuity, motion, 
energy and concentration are written: 
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The second order permeability tensor �� of the porous medium in the axis system of Figure 1 is written: 
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Since the porous medium is electrically isolated, the electric field will be zero everywhere from where 
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By deriving equations (10) and (11) and by subtracting (11) from equation (10) we eliminate the term of the pressure and we 
obtain: 
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By considering the Boussinesq approximation, we therefore have: 
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In steady state we have: 
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� = (VMW)X(VMW)Y  is the ratio of heat capacities. 

I = �(VMW)Y the diffusivity of the porous medium.                          (20) 

0 The Fick mass diffusivity of the porous medium. 

3.1. Conditions to the Limits 

3.1.1. On Vertical Walls 

Z
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3.1.2. On Horizontal Walls 
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3.2. Dimensionalization 

The dimensionless variables are written 
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Equations (16), (17), (18) and (19) are written 
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With |@ 
 �/�3 �⁄ 1DK is the Hartmann number, }@b 
�3�Q|∆, I�⁄  is the Rayleigh number based on the height of 

the cavity, 0@ 
 �3 |�⁄  is Darcy's number; and � 
 ���� ��  

is the relative viscosity. In practice, the approximation �����	� 
is often used. Therefore, λ will be taken equal to unity. 

In addition, equations (21), (22) and (23) associated with 
equations (28), (29), (30), (31) are written: 

* On vertical walls 
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4. Analytical Solution of the Equations 

In this part, the differential equations governing the 
phenomenon studied and subjected to the specified boundary 
conditions will be solved analytically. 

In this part, let's take a look at the central region of the 
cavity 

 

Figure 2. Cavity of great extension and characteristic scale of the variables x 
and y. 

^= et H are the characteristic scale of the variables x and y 
in the central region of the cavity 
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According to (34) the scale analysis, on the basis of (28), 
we can write: 
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Thus we can conclude that the flow in the central region 

of the cavity is in the horizontal direction ox’. This 
result has been validated by Cormack et Coll [8] and Vasseur 
et Coll. [9]. Consequently, the component u of the flow 
velocity in the central region depends only on the 
y-coordinate: 
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From equation (E28a) we deduce that the transverse speed 
v is zero 
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The temperature and concentration in the central region of 
the cavity depend only on the ordinate 
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Under the same conditions of application of the thermal 
gradient on the walls of a horizontal cavity containing a fluid 
medium, Birth [10] being the phenomenon of convection by 
thermo-capillarity, has shown in the past that the thermal 
gradient along of the horizontal axis ox 'is constant. Thus, 
following the proposal made by this author, we write: 
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By combining (E23) with (E35) we therefore have: 
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4.1. Flow Velocity 
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Solving the equation (44), taking into account the 
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boundary conditions and those based on the centro-symmetry 
of the flow field, the velocity is written: 

A 
 ���/����1
�Ko� N����/�?1�����E�KG

" `�         (45) 

In the following two limited cases of interest will be 
investigated, one of which will take into account low porosity 
media 0@ → 0 (pure porous medium) and the other medium 
with high porosity 0@ → ∞ (pure porous medium) and the 
other medium with high porosity; 

Case of pure fluid medium (0@ ≫ 1) 
For 0@ → ∞ then � → 0, (45) becomes: 

A = ���(����)�Ko� 	�(24 − ��) E3¡` + �K¢¡`¢ + 3£�P`¤G − `{ (46) 

Case of the pure porous medium (0@ ≪ 1) 
For 0@ → 0 then � → ∞, (45) becomes: 

A = ���(����)�Ko� 	�3� exp	�(` − 3�) − `{	      (47) 

Equations (46) and (47) are consistent with those 
obtained by Garandet and Alboussière [11] as well as 
Akowanou [12] for not only small Hartmann numbers but 
also for � = 0. 

4.2. Temperature and Concentration Fields 

Horizontal adiabatic walls 

Considering equations (39), (45); solving (42) with the 
boundary conditions of (33) we have: 
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a) Case of the pure porous medium (Da very small and ε very large) 
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b) Case of the pure fluid medium (Da very large and ε tends towards 0) 
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Equation (52) is the expression found by Akowanou [12] in the case of non-binary fluids (� = 0) 
Thermally conductive horizontal walls 

Considering equations (40), (45); solving (42) with the boundary conditions of (32) and (33) we have: 
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c) Case of the pure porous medium (Da very small and ε very large) 
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d) Case of the pure fluid medium (Da very large and ε tends towards 0) 

, = ���(����)�Ko� �E ¢�U − 3©G ` + �� E 3��K − 3¢¡G `¢ + E�K¢P− �z£�PG `¤{ + �Z	                  (58) 

% = ���(����)�Ko� �E ¢�U − 3©G ` + �� E 3��K − 3¢¡G `¢ + E�K¢P− �z£�PG `¤{ + �Z	                   (59) 

Equation (58) is validated by the results of the work of 
Akowanou [7]; Grandet and Alboussière [11] for low 

intensity fields and for a fluid containing almost no solute (� 
= 0). 
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The expression (40) is identical to that obtained by Vasseur 
and Hasnaoui [9] in the limit of small Hartmann numbers. 

5. Heat Transfer rate 

The average Nusselt number NuH is defined as the ratio of 

the total amount of heat transferred by convection to that 
received by conduction through the porous cavity. This 
number not only measures the porous layer but also is 
evaluated on the straight vertical hot wall, we have: 
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In dimensionless variables the transfer rate is written 
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Thermally conductive horizontal walls 
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6. The Mass Transfer Rate 

The average Sherwood count ÃℎÄÄÄ is the dimensionless number to characterize mass transfers in a fluid and an interface. It is 
defined by the ratio of mass transfer by convection to mass transfer by diffusion (Thomas Kilgore Sherwood). 

Ãℎ = n°±²³x°´µ±²n¶µYY·Åµ±²                                           (66) 
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So we have 
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Horizontal adiabatic walls 
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Thermally conductive horizontal walls 

Ãℎ = 1 + E���(�����Ko� G� N 3£�P− 3�K E ¢�K + 3¡G + ¢ª«*�¬­E�KG��U − ����(�)i�
©�K ����E�KG�	                     (71) 

7. Result and Discussion 

The influence of the characteristic parameters namely: Ha 
(Hartmann number), �∗  (anisotropy ratio), ϴ (angle of 

inclination of the main axes of the porous medium), Ra 
(Rayleigh number), Da (Darcy number) and A (geometric 
aspect ratio of the cavity) on the thermosolutal flow have been 
illustrated by the following figures. 

Figure 3 shows the distribution of the velocity in the central 
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region of the porous medium for 0@ 
 0.01; a=1; }@ 
 100 and � 
 	0.5. 

 

Figure 3. Velocity in the central region for different values of Ha. 

 
Figure 4. Influence of Ha on temperature in the central region. 

 

Figure 5. Influence of Ha on concentration in the central region. 
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From the analysis of Figures 4 and 5, we first deduce that 
the temperature and concentration profiles have symmetry at 
their level with respect to the central axis of the porous 
medium. Second, the more the Hartmann number changes, 
the more the temperature and concentration profiles 
gradually decrease. Finally, we observe for all the curves, 
they merge with their respective tangent at the points of 
contact with the limiting horizontal walls of the porous 
medium. This reflects the fact that these walls were imposed 
thermally insulated during the present study. 

 
Figure 6. Effect of Ha on Nu for different Ra. 

 
Figure 7. Effect of Ha on Sh for different Ra. 

Figures 6 and 7 illustrate the variations of the heat and 
mass transfer rate in porous media as a function of Hartmann 
for different values of the permeability ratio K* for Ra = 50; 
Da = 0.05; É =45°, A = 0.2; � = 0.4 et N =0.8. 

From the analysis of Figure 6, it emerges that the rate of 
heat transfers decreases sharply for different values of Ra as 
the Hartmann number increases. This sudden decrease tends 
to the conduction regime for which Nu = 1. Moreover, the 
value of Ra for which the pure conduction regime is reached 
depends on the Hartmann number and therefore on the 
transverse magnetic field (for Ra = 30; Ha = 2.5 and Ra = 50 
Ha = 2.5). Moreover, from Figure 7, we also retain that the 
mass rate decreases sharply for different values of Ra when 
the Hartmann number increases. For Ha ˃ 2.5 and Ra = 40 
we have Sh = 1 and Ha ˃ 3.5 and Ra = 50 we have Sh = 1 
which presents pure conduction. 

Figures 8 and 9 illustrate the variations of the heat and 
mass transfer rate in porous media as a function of Hartmann 
for different values of the permeability ratio K * when Ra= 
100; Da = 0.01, A = 0.5, K* = 1, É = 0°, � = 0.3, N = 0.4. 

 

Figure 8. Effect of Ha on Nu for different K*. 

 
Figure 9. Effect of Ha on Sh for different K *. 

From the analysis of Figures 8 and 9 we retain that the rate 
of heat and mass gradually decrease when K * increases for a 
low value of Ha. Likewise, when the Hartmann number 
increases, the Nusselt and Sherwood numbers decrease 
sharply for different anisotropy values, each tending towards 
unity (Nu = 1 and Sh = 1), which indicates the conduction 
regime. Figures 10 and 11 illustrate the variations of the 
Rayleigh number Ra on the heat and mass transfer by 
convection for Da= 0.05, A=0.5; K*=0.1, É=15°, �=0.6 et 
N=0.7. 

 
Figure 10. Effect of Ra on Nu for different Ha. 
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Figure 11. Effect of Ra on Sh for different Ha. 

From the analysis of Figures 10 and 11, it emerges that the 
heat and mass transfers increase from the pure conduction 
regime. For a fixed Rayleigh number, as the Hartmann 
number increases the rate of heat transfer and mass decreases. 
Results validated by the work of Akowanou [13] for � = 0. 

Figures 12 and 13 illustrate the variations of the Darcy Da 
number on heat and mass transfer by convection for Da= 
0.05, A=0.5; K*=0.25, É=15°, �=0.6 and N=0.7. 

 
Figure 12. Effect of Da on Sh for different 7. 

 

Figure 13. Effect of Da on Sh for different 7. 
From the analysis of Figures 12 and 13, it emerges that for 

low Darcy values (Da≤1) the Nusselt and Sherwood number 
tend asymptotically towards a constant value which strongly 
depends on the orientation angle value. For different values of 
the orientation angle we deduce that the heat and mass transfer 
rates have each reached their maximum values for É = 90° and 
their minimum values for É = 0°. Results validated by the 
work of Degan 1997 [13] in Natural convection in an 
anisotropic porous cavity: Brinkman model, Chap 6 page 174. 

8. Conclusion 

A study has been made of bi-diffusive convection in a 
cavity filled by a porous medium saturated by a binary fluid. 
The cavity is submitted to variable thermal conditions on its 
wall. The porous medium, assumed to be hydrodynamically 
anisotropic with its principal axes oriented in a direction that is 
oblique to the gravity is submitted to transverse magnetic field 
effect. Analytical expressions valid for fully developed flow 
and based on the generalized Brinkman-extended Darcy 
model are obtained. The major conclusions of the present 
paper can be expressed as follow: 

a) Both magnetic field and anisotropic parameters of the 
porous medium have a strong influence on the fluid motion, 
the heat and mass transfer through the porous matrix; 

b) Heat and mass transfer in the porous medium become 
very important when the permeability in the horizontal 
direction is higher than that one prevailing in the vertical 
direction; 

c) Increasing the applied transverse magnetic field 
significantly reduces the flow velocity saturating the 
porous medium and then attenuates the heat and mass 
transfer. 
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