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Abstract: The main theme of the present examined the influence of heat transfer on magnetohydrodynamics (MHD) for the 

oscillatory flow of Williamson fluid with variable viscosity model for two kinds of geometries "Poiseuille flow and Couette 

flow" through a porous medium channel. The momentum equation for the problem, is a non-linear differential equations, has 

been found by using "perturbation technique" and intend to calculate the solution for the small number of Weissenberg (We 

<<1) to get clear forms for the velocity field by assisting the (MATHEMATICA) program to obtain the numerical results and 

illustrations. The physical features of Darcy number, Reynolds number, Peclet number, magnetic parameter, Grashof number 

and radiation parameter are discussed simultaneously through presenting graphical discussion. Investigated through graphs the 

variation of a velocity profile for various pertinent parameters. While the velocity behaves strangely under the influence of the 

Brownian motion parameter and local nanoparticle Grashof number effect. On the basis of this study, it is found that the 

velocity directly with Grashof number, Darcy number, radiation parameter, Reynolds number and Peclet number, and reverse 

variation with magnetic parameter and frequency of the oscillation and discussed the solving problems through graphs.  
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1. Introduction 

Central porosity is a matter containing a number of small 

holes distributed throughout the matter. A porous medium 

flows through the fluid infiltration and water infiltration into 

the river beds. The movement of groundwater, water, and oils 

are some important examples of flows through porous means. 

The oil tank often contains a sedimentary structure such as 

limestone and sandstone in which the oil is contained. 

Another example of flow through a porous medium is 

leakage under the dam which is very important. Examples: of 

natural porosity such as sand ash, wood, filtering, human 

lung, bitterness and yellow stones, oil production engineering 

and many other processes. 

In [1] show the exact solutions for fourth kinds of flows 

between two parallel plates. [2] studied the influence of 

inclined magnetic field between two infinite parallel 

plates, [3] discussed the laminar flow between parallel 

plates under the action of the transverse magnetic field 

and heat transfer. [4] discussed the two kinds of 

geometries Poiseuille flow and Couette flow of Carreau 

fluid with pressure dependent viscosity in a variable 

porous medium. [5] examined the flow of Williamson 

fluid for two kinds of geometries Poiseuille flow and 

Couette flow in an inclined channel. 

Viscosity is one of the most important specifications for 

fluids, [6] studied the variable viscosity through a porous 

medium and used the homotopy analysis method to solve the 

problem. [7] studied the related of the variable viscosity 

through a porous medium by using generalized Darcy’s law, 

to solve the problem he using the perturbation technique. [8] 
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oscillatory flow for Williamson fluid through a porous 

medium. [9] studied the variable viscosity of Jeffrey fluid in 

an asymmetric channel.  

Consider a mathematical model to influence of heat 

transfer on MHD oscillatory flow for Williamson fluid with 

variable viscosity through a porous medium channel. The 

perturbation technique series use to solve the problem for the 

two kinds of flow Poiseuille flow and Couette flow are 

addressed. The result of the physical parameters problem was 

discussed by using the graphs. 

2. Mathematical Formulation 

Consider the flow of a Williamson fluid in the channel of 

breadth l qualify the effects of magnetic field and radioactive 

heat transference as described in Figure 1. Supposed that the 

fluid has very small electromagnetic force produced and the 

electrical conductivity is small. Considering a Cartesian 

coordinate system such that, (����, 0,0� is the velocity vector 

in which v is the x-component of velocity and y is orthogonal 

to the x-axis.  

 
Figure 1. Physical model. 

The constitutive equation for Williamson fluid is given by 

[10]: 

� � 	
̅� 
 �                             (1) 

τ� � �μ� 
 �μ� 	 μ���1 
 Γγ������A∗              (2) 

where 
̅ is the pressure,�̅ is the extra stress tensor, Γ is the 

time constant, � is the unit tensor, �� is the infinite shear rate 

viscosity and �� � �� � then !�  is given by: 

γ� � "�
#∑ ∑ !�%&!�&%&% � "�

#∏	and ∏ �)*�A∗�#, A∗ � ∆,� 
 �∆,��-                                            (3) 

where (.,� ) Is the fluid velocity in the Cartesian coordinates �/, �, 0� , �� � 0	and Γ!� 1 1. Then we can be writing the 

constitutive equation for Williamson fluid extra stress tensor by follows as:  

�̅ � �� ���1 
 2!�̅��3∗                                                                                 (4) 

The equations of momentum and energy governing such a flow, subjugate to the Boussinesq approximation, are: 

4 56�
57̅ � 	 58̅

59̅ 
 5:�;;����59̅ 
 5:�;<����5=� 
 5:�;>����5?̅ 
 4@A� 	  �� 	 BC�#DEF#�G��̅ 	 H�-�
I �̅                                     (5) 

4 5-
57̅ � J

KL
5M-
5=�M 	 �

KL
5N
5=                          (6) 

The temperatures at the walls of the channel are given as: 

 �  �	at	�� � 0, and	 �  �at	�� � S.           (7) 

where �̅ is the axial velocity, T is a thermal conductivity,   

is a fluid temperature, 4 is a fluid density, A is a coefficient 

of volume amplification due to temperature,	@ is a hastening 

due to gravity, k is a permeability, U8	is a specific heat at 

constant pressure, B is a conductivity of the fluid, �� � fluid 

viscosity dependent on temperature, C�	is a magnetic field 

strength, (0 V G V W ) is the angle between velocity field and 

magnetic field strength and X is a radioactive heat flux.  

The radioactive heat flux [11] is given by:  

5N
5= � 4Z#� � 	  �                          (8) 

The radiation absorption denoted by Z. 

Non-dimensional are: 

� � 6�
[ , / � 9̅

\ , � � =�
\ , ] � -�-̂

-_�-̂ , ) � 7̅[
\ , 
 � 8̅`

H[ , a# � bcM̂`M
H 	

��]� � H�-�
H^ , de � f\[

H , ge � f\[hLJ , i# � jkM\M
J , �99 � \

H^[ �9̅9����		lm � I
\M , n* � fop\M�-�-̂ �

H[ , γ� � \
[ γ��, �9= � \

H^[ �9̅=���� , �9? � \
H^[ �9̅?����qr

s
rt

                                    (9) 

where V is the mean flow velocity, Darcy number lm , Reynolds number de, Peclet number ge , magnetic parameter a , 
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Grashof number n* and radiation parameter i. 

Substituting (8) and (9) into (5) - (6), we obtain:  

4 [56uv57 � 	 w^vu 58
\59 
 w^vu 5:;;

\59 
 w^vu 5:;<
\5= 
 w^vu 5:;>

\5? 
 4@A� � 	  ��] 	 BC�#DEF#�G�,� 	 H�x�H^[I �          (10) 

4	 5�x�-_�-̂ �y-̂ ��uv57 � I
Kz �5M�x�-_�-̂ �y-̂ ��

\M5=M 	 �
I 4Z#( � −  )]                                  (11) 

where �99 = 0, �9= = 	�(]) {|1 + Γ 56
5=}~

56
5= , �9? = 0.  

The non-dimensional boundary conditions for temperature equation: 

](0) = 0, ](1) = 1	                                                                      (12) 

Finally, the non-dimensional equations are: 

de 56
57 = − 58

59 +
5
5= {�(])(

56
5= +�e(565=)

#)~ + n*]� − |a�
# + H(x)

�� } �                                 (13) 

4 5x
57 =

5Mx
5=M +i#]                           (14) 

where a� = aDEF#(G), a is the Hartmann number.  

To solve the temperature (14) with boundary conditions 

(12), let 

](�, )) = ]�(�, ))e%�7                        (15) 

The frequency of the oscillation denoted by �. 

Substituting the (15) into the (14) 

5Mx
5=M + (i# − E�ge)]� = 0                    (16) 

The solution of (16) with boundary conditions (12) is  

]�(�) = csc(�) sin	(�), where 

� = √i# − E�ge. Therefore  

](�, )) = csc(�) sin	(�)e%�7                 (17) 

3. Solution of the Problem 

Now, we solve (13) for two kinds of geometries 

"Poiseuille flow and Couette flow". 

(i) Poiseuille flow  

Suppose that the rigid flakes at � = 0 and � = S are at rest. 

Therefore  

�̅ = 0	at	�� = 0, and	�̅ = 0	at	�� = S 
The non-dimensional boundary conditions:  

�(0) = 0, �(1) = 0.                      (18) 

To solve the momentum (13), let 

− 58
59 = �e%�7                         (19) 

�(�, )) = ��(�, ))e%�7                    (20) 

Where � is a real constant. 

The ''Reynold's model'' given by variation of viscosity with 

temperature defined as: 

�(]) = e��x                         (21) 

By using the Maclaurin series, we get: 

�(]) = 1 − �]	� << 1                     (22) 

In a case when the viscosity is fixed here � = 0 . 

Substituting (22) into (13), we get:  

de 56
57 = − 58

59 +
5
5= {(1 − �])(565= +�e(565=)

#)~ + n*]� −
|a�

# + (���x)
�� } �                           (23) 

Equation (23) is non-linear differential equations and it is 

hard to get an exact solution, so by use the perturbation 

technique to find the problem solution, we write: 

�� = ��� +�e��� +�e#��# + O(�e�)      (24) 

Substituting (24) into (23) with boundary conditions (18), 

then we equality the powers of (�e): 
A - Zeros-order system (�e�) 

(1 − �]) 56^^5=M − |a�
# + deE� + (���x)

�� } ��� = −(� + n*]�) (25) 

The associated boundary conditions are: 

���(0) = ���(1) = 0                      (26) 

B - First-order system (�e�) 

(1 − �]) 56^_5=M − |a�
# + deE� + (���x)

�� } ��� =
−2(56^^5=

5M6^^
5=M )e

%�7                     (27) 

The associated boundary conditions are: 

���(0) = ���(1) = 0                      (28) 

C - Second-order system (�e#) 

(1 − �]) 56^M5=M − |a1
2 + deE� + (���x)

�� } ��# =
−2(56^^5=

5M6^_
5=M + 56^_

5=
5M6^^
5=M )e

%�7          (29) 
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The associated boundary conditions are:  

��#(0) = ��#(1) = 0                 (30) 

Giving some physical meaning to the problem by 

considering that when �  is small and by using the 

perturbationseries with parameters �. Substitute for �% (For E 

= 0, 1, 2) by:  

�% = �%� + ��%� + �#�%# + O(��)                   (31) 

through equate the degree of like powers in �: 

	(1 − �]) 5
5=M (��� + ���� + �#��#) − |a�

# + deE� + (���x)
�� } (��� + ���� + �#��#) = −(� + n*]�)                  (32) 

(1 − �]) 5
5=M (��� + ���� + �#��#) − |a�

# + deE� + (���x)
�� } (��� + ���� + �#��#) =

−2[ 55= (��� + ���� + �#��#) 5M
5=M (��� + ���� + �#��#)]e%�7                             (33) 

(1 − �]) 5
5=M (�#� + ��#� + �#�##) − |a�

# + deE� + (���x)
�� } (�#� + ��#� + �#�##) =

−2[ 55= (��� + ���� + �#��#) 5M
5=M (��� + ���� + �#��#) + 5

5= (��� + ���� + �#��#) 5M
5=M (��� + ���� + �#��#)]e%�7 (34) 

The solutions of (32) - (34), are a very long. Finally, the perturbation solutions up to a second term for � is given by:  

� = (��� + ���� + �#��#) +�e(��� + ���� + �#��#) +�e#(�#� + ��#� + �#�##)                       (35) 

(ii) Couette flow 

The upper flake is locomotion and the lower flake is fixed 

with the velocity ,̀ . The boundary conditions for the Couette 

flow problem as defined:  

�(0) = 0, �(1) = ,�	                            (36) 

By the same governing equation in Poiseuille flow (13). The 

solution, in this case, has been calculated by the perturbation 

technique and the results have been discussed through graphs. 

4. Results and Discussion 

We discussed the influence of heat transfer on MHD 

oscillatory flow for Williamson fluid with variable viscosity 

through a porous medium for '' Poiseuille flow and Couette 

flow'' in some results through the graphical illustrations. The 

analytical results and some of the graphical significant results 

are presented in figures 2-20. The momentum equation is 

resolved by using perturbation technique [12] and all the 

results are discussed graphically by assisting the 

(MATHEMATICA) program.  

The velocity profile of Poiseuille flow is shown in figures 2-9. 

Figure 2 shows the velocity profile	� decreases by the increasing 

frequency of the oscillation parameter �. Figure 3 illustrates the 

influence Grashof number n* on the velocity profiles function � 

vs. � , it is found by the increasing n*  the velocity profiles 

function �  increases. Figure 4 shows that velocity profile � 

rising up by the increasing influence the parameter �.  

Velocity profiles increase by the increasing of Darcy 

number in Figure 5. Figure 6 illustrates the influence 

magnetic parameter a on the velocity profiles function � vs. 

� , it is found by the increasing a  the velocity profiles 

function � decreases. Figure 7 shows the velocity profile	� 

rising up by the increasing radiation parameter i. Figure 8 

show that velocity profile �  increases by the increasing 

influence the Reynolds number. Figure 9 shows the velocity 

profile	� decreases with the increasing G. 

The velocity profile of Couette flow is shown in figures 

10-17. We found that by the increasing each of parameters 

de, n*, lm, i and � the velocity profile � increases, while � 

decreases by the increasing a, G and	�. 

Based on (17), Figure 18 show that influence of i  on the 

temperature function ]. The temperature increases by the increase 

in i. Figure 19 observed that the influence ge in temperature ] 

by the increasing ge	then ] increases. Figure 20 show us that with 

the increasing of � the temperature ] decreases.  

 

Figure 2. " Poiseuille flow"; Velocity profile for � with a = 1,i = 1, n* =
1, lm = 0.8, de = 1, ge = 1, � = 1,�e = 0.05, G = �

j , � = 0.02, ) = 0.5. 

 

Figure 3. " Poiseuille flow"; Velocity profile for n* with a = 1,i = 1,� =
1, lm = 0.8, de = 1, ge = 1, � = 1,�e = 0.05, G = �

j , � = 0.02, ) = 0.5. 
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Figure 4. " Poiseuille flow"; Velocity profile for �  with a = 1,i = 1,� =
1, lm = 0.8, de = 1, ge = 1, n* = 1,�e = 0.05, G = �

j , � = 0.02, ) = 0.5. 

 

Figure 5. " Poiseuille flow"; Velocity profile for lm with a = 1,i = 1,� =
1, � = 1, de = 1, ge = 1, n* = 1,�e = 0.05, G = �

j , � = 0.02, ) = 0.5. 

 

Figure 6. " Poiseuille flow"; Velocity profile for a with lm = 0.8, i = 1,� =
1, � = 1, de = 1, ge = 1, n* = 1,�e = 0.05, G = �

j , � = 0.02, ) = 0.5. 

 

Figure 7. " Poiseuille flow"; Velocity profile for i with lm = 0.8,a = 1,� =
1, � = 1, de = 1, ge = 1, n* = 1,�e = 0.05, G = �

j , � = 0.02, ) = 0.5. 

 

Figure 8. " Poiseuille flow"; Velocity profile for de  with lm = 0.8,a =
1,� = 1, � = 1, ge = 1,i = 1, n* = 1,�e = 0.05, G = �

j , � = 0.02, ) =
0.5. 

 

Figure 9. "  Poiseuille flow"; Velocity profile for G with lm = 0.8,a = 1,� =
1, � = 1, ge = 1,i = 1,n* = 1,�e = 0.05, de = 1, � = 0.02, ) = 0.5. 

 

Figure 10. " Couette flow"; Velocity profile for n* with a = 1,i = 1,� =
1, lm = 0.8, de = 1, ge = 1, � = 1,�e = 0.05, � = 0.02, G = �

j , ,0 =
0.5, ) = 0.5. 

 

Figure 11. " Couette flow"; Velocity profile for a with n* = 1,i = 1,� =
1, lm = 0.8, de = 1, ge = 1, � = 1,�e = 0.05, � = 0.02, G = �

j , ,0 =
0.5, ) = 0.5. 
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Figure 12. " Couette flow"; Velocity profile for i with n* = 1,a = 1,� =
1, lm = 0.8, de = 1, ge = 1, � = 1,�e = 0.05, � = 0.02, G = �

j , ,0 =
0.5, ) = 0.5. 

 

Figure 13. " Couette flow"; Velocity profile for lm with n* = 1,a = 1,� =
1,i = 1, de = 1, ge = 1, � = 1,�e = 0.05, � = 0.02, G = �

j , ,0 =
0.5, ) = 0.5. 

 

Figure 14. " Couette flow"; Velocity profile for de with n* = 1,a = 1,� =
1,i = 1, lm = 0.8, ge = 1, � = 1,�e = 0.05, � = 0.02, G = �

j , ,0 =
0.5, ) = 0.5. 

 

Figure 15. " Couette flow"; Velocity profile for G  with n* = 1,a = 1,� =
1,i = 1, lm = 0.8, de = 1, � = 1,�e = 0.05, � = 0.02, ge = 1, ,0 =
0.5, ) = 0.5. 

 

Figure 16. " Couette flow"; Velocity profile for � with n* = 1,a = 1, de =
1,i = 1, lm = 0.8, de = 1, � = 1,�e = 0.05, � = 0.02, G = �

j , ,0 =
0.5, ) = 0.5. 

 

Figure 17. " Couette flow"; Velocity profile for � with n* = 1,a = 1, de =
1,i = 1, lm = 0.8, de = 1,� = 1,�e = 0.05, � = 0.02, G = �

j , ,0 =
0.5, ) = 0.5. 

 

Figure 18. Influence of i on Temperature ] for � = 1, ge = 0.7, ) = 0.5. 

 

Figure 19. Influence of ge on Temperature ] for ) = 0.5,i = 1,� = 1. 
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Figure 20. Influence of � on Temperature ] for ) = 0.5, i = 1, ge = 0.7. 

5. Conclusion and Remarks 

We discuss the influence of heat transfer on MHD 

oscillatory flow for Williamson fluid with variable viscosity 

through a porous medium. The velocity and temperature are 

found analytical, and use different values to find the results 

of pertinent parameters, namely for the velocity and 

temperature. The key point is listed below:  

i. The velocity profiles increase with increasing radiation 

parameter i, Darcy number lm  and Grashof number 

n* for both the Poiseuille and Couette flow. 

ii. There are little increases in velocity profiles by 

increasing Reynolds number de  and �  for both the 

Poiseuille and Couette flow. 

iii. The velocity profiles decrease with increasing magnetic 

parameter a , the angle between velocity field and 

magnetic field strength G and frequency of the oscillation 

parameter � for both the Poiseuille and Couette flow. 

iv.  Show that by the increases radiation parameter i and 

Peclet number ge the temperature increasing ] and the 

temperature ] decreases by the increasing frequency of 

the oscillation parameter �.  
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