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Abstract: In this paper, the steady boundary layer stagnation point flow and heat transfer of a micropolar fluid flowing over an 

exponentially stretching sheet is investigated. The solution of the problem is obtained numerically using the Keller-box method 

and the series solutions are obtained with the help of homotopy analysis method (HAM). Comparisons of both the solutions are 

presented. At the end the effects of important physical parameters are presented through graphs and the salient features are 

discussed. 
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1. Introduction 

The study of stretching sheet was initiated by Crane [1], has 

attained lot of attention due to its wide range of engineering 

applications. Literature is rich of the material concerning the 

boundary layer flow of steady/unsteady flow of 

Newtonian/non-Newtonian fluids. In a recent paper Merkin 

and Kumaran [2] has studied the unsteady boundary layer 

flow on a shrinking surface in an electrically conducting fluid. 

Moreover, the suction effects for the magneto hydrodynamic 

viscous flow over a shrinking sheet have been analyzed by 

Akyildiz and Siginer [3]. According to their analysis the 

velocity field exhibited a decreasing behavior with respect to 

the suction parameter. The problem of stagnation point flow of 

a viscous fluid towards a stretching sheet was discussed 

analytically by Nadeem et al. [4]. Further, the steady boundary 

layer stagnation point flow of a micropolar fluid towards a 

horizontal linearly stretching/shrinking sheet has been studied 

by Yacob et al. [5]. They solved the problem numerically 

using the Runge-Kutte-Fehhlberg method with shooting 

technique. Nadeem and Awais [6] have examined the effects 

of variable viscosity and variable thermo capillarity on the 

unsteady flow in a thin film on a horizontal porous shrinking 

sheet through a porous medium. Moreover, the stagnation 

point flow towards a shrinking sheet has been analyzed by 

Wang [7], the obtained results were reflecting that a region of 

reverse flow occurs near the surface and that for larger 

shrinking rates, the solution/similarity can't be obtained. 

Recently, the suction/blowing and thermal radiation effects on 

steady boundary layer stagnation point flow and heat transfer 

over a porous shrinking sheet has been investigated by 

Bhallacharrya and Layek [8]. 

The study of stretching/shrinking sheet phenomena for the 

boundary layer stagnation point flow has been considered by 

many researchers for linear/polynomial stretching but not a lot 

of work is available on these concepts with exponential 

stretching and stagnation point flow. Recently, Abdul Rehman 

et al. [9] have presented the solutions for the problem of 

boundary layer flow and heat transfer of a third grade fluid 

flowing over an exponentially stretching sheet. In another 

attempt, Abdul Rehman et al. [10] have also discussed the 

nanoparticles effect over the boundary layer flow of a Casson 

fluid flowing over an exponentially stretching surface. The 

purpose of the present work is to provide a solution of the 

boundary layer stagnation point flow of a micropolar fluid for 

exponentially stretching/shrinking sheets. The solutions are 

obtained through a second order difference scheme known as 

the Keller-box technique. Also the analytical solutions are 

obtained by using the homotopy analysis method (HAM). 

Comparisons of both the solutions are presented for 
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compatibility. Details about the homotopy analysis method 

can be found in Refs. [11-28]. 

2. Formulation 

Let us consider a stagnation point flow of an incompressible 

micropolar fluid over an exponentially stretching sheet. The 

Cartesian coordinates (x, y) are used such that x is along the 

surface of the sheet, while y is taken as normal to it. The 

related boundary layer equations of motion in the presence of 

microrotation and heat transfer are 
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where (u, v) are the velocity components along the (x, y) axes, 

ρ is the fluid density, µ is the coefficient of viscosity, k is the 

vertex viscosity, ν is the kinematic viscosity, j is the 

microrotation density, γ is the micropolar constant, N is the 

angular microrotation momentum, T is temperature, α is the 

thermal diffusivity, p is pressure and �
 is the free stream 

velocity. The corresponding boundary conditions for the 

problem are 
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where �"  is the stretching velocity and $"  is the surface 

temperature. For exponential stretching, the expression for 

�
, �" 	and $" are defined as 

�
 = (.�/0 ,								�" = 1.�/0 ,										$" = $
 + 2.�/0  (7) 

in which a and b are constant velocities, c is constant 

temperature and L is the reference length. 

To convert Equations (1) to (4) into a nondimensional form 

we introduce the following similarity transformations 
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With the help of transformations given in Equations (8) and 

(9), Equation (1) is identically satisfied and Equations (2) to (4) 

take the following form 
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in which K=k/µ is the micropolar parameter, K = �/L� is the 

micropolar coefficient, M. = N�
/2�  is the non-similar 

Reynolds number, OP = �/!  is the Prandtl number and 

Q = 0�
R . The boundary conditions in nondimensional form can 

be written as 
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where S = 1/(. The skin friction coefficient and the local 

Nusselt numbers are obtained in dimensionless form as 
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where M.�
9
� = &8�
/2�N is local Reynolds number. 

3. Numerical Solution of the Problem 

To solve system of Equations (10) to (12) with the help of 

Keller-box scheme we first reduce the system into a first order 

one by taking the relations 

, = 34,						[ = ,4,						O = =4,						) = >′      (17) 

with the help of Equation (17), Equations (10) to (12) can be 

written as 
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O′ + B
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The corresponding boundary conditions take the form 

3%0' = 0,				,%0' = S,			=%0' = −#344%0',			>%0' = 1,  (21) 

, → 1,				= → 0,				> → 0,				(,		5 → ∞		        (22) 

The above system of equations is first approximated by 

central differences and then those equations are linearized 

using Newton's method. The solution then can be obtained by 

applying block-elimination method over these linearized 

equations. The details of the procedure can be found in 

[29-31]. 

4. HAM Solutions 

To validate the results obtained from Keller-box method an 

analytical solution of the problem is also provided with the 

help of HAM. For HAM solution we choose the initial guesses 

as 

3\%5' = %S − 1' + 5 − %S − 1'.?<          (23) 

=\%5' = #%S − 1'.?<	,						>\%5' = .?<,       (24) 

The corresponding auxiliary linear operators are 
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which have the property 
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where 2g%h = 1,… ,7',  are arbitrary constants. The 0
th

 order 

deformation equations are defined as 
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The appropriate boundary conditions for the 0
th

 order 

system are 

3m%0; k' = 0,			3m′%5; k' = S,				3′q %5; k' → 1, (,	5 → ∞, (33) 
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Further details of the HAM procedure can be found in [11, 12]. 

5. Results and Discussion 

The convergence of HAM solution for velocity, 

microrotation and temperature have been discussed by 

plotting ℏ -curves for nondimensional f´´, M´´ and θ ′′ . It is 

found that the admissible values of ℏ -curves are 

10.9 0.1− ≤ ≤ −ℏ , 
21.25 0.3− ≤ ≤ −ℏ  and 31.5 0.25− ≤ ≤ −ℏ  

for velocity, microrotation and temperature profiles 

(Figures. (1)-(3))). Figures.(4) and (5) are plotted for 

comparison of the results obtained from numeric and HAM 

solution for nondimensional velocity f´ for various values 

of microrotation parameter K and the stretching ratio ε. 

From these graphs it is clear that both the solutions are in 

good agreement. From Figure. (4) it is found that with the 

increase in the micropolar parameter K, the velocity profile 

f´ decreases and also the boundary layer thickness reduces. 

Figure. (5) depicts the behavior of velocity profile f´ with 

respect to the stretching ratio ε. It is observed from Figure. 

(5) that with an increase in the stretching ratio ε, the 

velocity profile f´ also increases. The comparisons of 

analytical and numerical solutions obtained for the 

nondimensional microrotation profile M for different 

values of the micropolar parameter Λ and the stretching 

ratio ε are sketched in Figure. (6) and Figure. (7). The 

observed settlement of the two solutions is acceptable. 

From Figure. (6) it is observed that as the micropolar 

parameter Λ increases, the microrotation velocity profile M 

is forced to decrease. Whereas, with increase in the 

stretching ratio ε, the microrotation profile M also increases. 

Figure. (8) is sketched to check the compatibility of the 

Keller-box and homotophy solutions obtained for the 

nondimensional heat transfer profile > for different values 

of the Prandtl number Pr, from Figure. (8) it is observed 

that both the solutions are in agreement and that due to 

increase in the Prandtl number Pr the temperature profile > 

decreases. Figure. (9) is designed to show the behavior of f´ 

for different combinations of the micropolar parameter K 

and the stretching ratio ε. It is observed that for the 

stretching ratio ε<0 (shrinking sheet) an increase in the 

micropolar parameter K demands a decrease in the velocity 

profile f´, while for the stretching ratio ε>0 

( )stretching sheet  velocity profile f´ has a dual behavior 

that is for the stretching ratio ε<1, an increase in the 

micropolar parameter K, the velocity profile f´ decreases, 

whereas for the stretching ratio ε>1, with an increase in the 

micropolar parameter K, the velocity profile f´ also 

increases. Figure.(10) is schemed to detect the manner 

revealed by the microrotation profile M when plotted for 

different combinations of the micropolar parameter Λ and 

the stretching ratio ε. It is observed that the behavior of 

micropolar parameter Λ for different values of the 

stretching ratio ε is similar to the behavior of the micropolar 

parameter K for different values of the stretching ratio ε 

over the microrotation profile M´ (Figure. (9)). 

The microrotation parameter M for various values of Q 

against different Λ is plotted in Figure. (11). From Figure. (11) 

it is observed that with an increase in	Q, M increases. It is also 

observed from Figure. (11) that the rate of convergence for 

small Λ is much faster to that observed for a larger Λ. Figure. 

(12) is graphed to predict the influence of Re for different 

values of ε . It is observed that an increase in Re with ε<1 
tends to decrease M, whereas for ε>1 the behavior is opposite. 

Figure. (13) is depicting over the effects of Pr over θ  for 

different choices of ε. It is observed that temperature profile 

decreases with an increase in Pr the thermal boundary layer 

thickness also decreases and that the rate of convergence 

observed is minimizing with increase in ε. The coefficient of 

skin friction cf for different values of K and ε against different 

Pr are shown in Figure. (14). It is observed that cf increases 

with the increase in K and ε. The Nusselt number Nu for 

different values of Pr are shown in Figure. (15). 
Table. (1) is prepared to observe the behavior of skin 

friction coefficient for different combinations of the 

parameters K, ε and Λ It is observed that skin friction 

decreases for all the parameters. Table. (2) is displaying the 

behavior of local Nusselt numbers for different combinations 

of the parameters Pr, ε and K. It seems that local Nusselt 

numbers increases with an increase in Pr and ε, whereas with 

an increase in K local Nusselt numbers decreases. From Table. 

(1) and Table. (2) it is obvious that the numerical solutions and 

the analytical solutions both are in excellent resemblance. 
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Figure 1. ℏ- curve for f. 

 

Figure 2. ℏ- curve for M. 

 

Figure 3. ℏ- curve for >. 

 

Figure 4. Comparison of numerical and HAM solutions for different values of 

K over 3′. 

 

Figure 5. Comparison of numerical and HAM solutions for different values of 

ε over 3′. 

 

Figure 6. Comparison of numerical and HAM solutions for different values of 

Λ over =. 

 

Figure 7. Comparison of numerical and HAM solutions for different values of 

ε over =. 
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Figure 8. Comparison of numerical and HAM solutions for different values of 

Pr over >. 

 

Figure 9. Influence of K over 3′ for different values of ε. 

 

Figure 10. Influence of Λ over = for different values of ε. 

 

Figure 11. Influence of Q over = for different values of Λ. 

 

Figure 12. Influence of Re over = for different values of ε. 

 

Figure 13. Influence of Pr over > for different values of ε. 

 

Figure 14. Variation of Skin friction for different values of K and ε against Re. 

 
Figure 15.  Variation of Nusselt numbers for different values of Re and ε 

against Pr. 
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Table 1. Behavior of skin friction coefficient for Re=1,	Q = 1. 

 f´´(0) 

 
Λ\ε -0.25 0.0 0.5 1.5 

 K-b HAM K-b HAM K-b HAM K-b HAM 

K = 0.2 

0.5 1.8317 1.8317 1.5854 1.5854 0.8997 0.8997 -1.0799 -1.0799 

1 1.8260 1.8260 1.5803 1.5803 0.8968 0.8968 -1.0767 -1.0767 

2 1.8200 1.8200 1.5749 1.5749 0.8938 0.8938 -1.0734 -1.0734 

K = 0.5 

0.5 1.6916 1.6916 1.4618 1.4618 0.8275 0.8275 -0.9899 -0.9899 

1 1.6845 1.6845 1.4548 1.4548 0.8231 0.8231 -0.9846 -0.9846 

2 1.6752 1.6752 1.4464 1.4464 0.8182 0.8182 -0.9789 -0.9789 

K = 1 

0.5 1.5180 1.5180 1.3099 1.3099 0.7399 0.7399 -0.8824 -0.8824 

1 1.5144 1.5144 1.3050 1.3050 0.7360 0.7360 -0.8768 -0.8768 

2 1.5063 1.5063 1.2969 1.2969 0.7308 0.7308 -0.8702 -0.8702 

K = 2 

0.5 1.2969 1.2969 1.1163 1.1163 0.6284 0.6284 -0.7469 -0.7469 

1 1.3011 1.3011 1.1173 1.1173 0.6272 0.6272 -0.7434 -0.7434 

2 1.2994 1.2994 1.1140 1.1140 0.6240 0.6240 -0.7382 -0.7382 

Table 2. Behavior of local Nusselt numbers for Λ=1,
 
Re=1, Q = 1. 

 -ϴ´(0) 

 
Pr\K 0.0 0.5 1.0 2.0 

 K-b HAM K-b HAM K-b HAM K-b HAM 

ε = 0.5 

0.72 1.1566 1.1566 1.1425 1.1425 1.1329 1.1329 1.1201 1.1201 

1 1.3446 1.3446 1.3281 1.3281 1.3170 1.3170 1.3022 1.3022 

7 3.3150 3.3150 3.2817 3.2817 3.2598 3.2598 3.2315 3.2315 

10 3.9238 3.9238 3.8869 3.8869 3.8626 3.8626 3.8316 3.8316 

ε = 1.5 

0.72 1.5313 1.5313 1.5438 1.5438 1.5522 1.5522 1.5632 1.5632 

1 1.8199 1.8199 1.8341 1.8341 1.8435 1.8435 1.8556 1.8556 

7 5.0253 5.0253 5.0487 5.0487 5.0636 5.0636 5.0822 5.0822 

10 6.0490 6.0490 6.0741 6.0741 6.0901 6.0901 6.1099 6.1099 

ε = 5 

0.72 2.4529 2.4529 2.5283 2.5283 2.5777 2.5777 2.6406 2.6406 

1 2.9755 2.9755 3.0574 3.0574 3.1102 3.1102 3.1768 3.1768 

7 8.8622 8.8622 8.9774 8.9774 9.0492 9.0492 9.1379 9.1379 

10 10.7731 10.7731 10.8994 10.8994 10.9782 10.9782 11.0759 11.0759 
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