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Abstract: This article uses von-Mises coordinates to present a class of new exact solutions of the system of partial 

differential equations for the plane steady motion of incompressible fluid of variable viscosity in presence of body forcefor 

moderate Peclet number. This communication applies successive transformation technique and characterizes streamlines 

through an equation relating a differentiable function f(x) and a function of stream function. Considering the function of stream 

function satisfies a specific relation, the exact solutions for moderate Peclet number with body force are determined for given 

one component of the body force when f(x) takes a specific value and when it is not. In both the cases, it shows an infinite set 

of streamlines, the velocity components, viscosity function, generalized energy function and temperature distribution for 

intermediate Peclet number in presence of body force. When f(x) takes a specific value, a relation between viscosity and 

temperature function is observed. 

Keywords: Variable Viscosity Fluids, Navier-Stokes Equations with Body Force, Martin’s System, von-Mises Coordinates, 

Moderate Peclet Number 

 

1. Introduction 

For the motion of a variable viscosity fluidthe equation of 

conservation of mass, momentum and energy are known as a 

system of partial differential equations (PDE). The momentum 

equationsare Navier-Stokes equations (NSE). In Navier-Stokes 

equations, the product of mass and acceleration of fluid 

element are in left-hand side and body forces term in addition 

to surface forcein right-hand side. The non-dimensional 

equations for the steady motion of constant density and 

variable viscosity fluid in tensor notation are following: 
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where ( )F xα α is the body force per unit mass, ( )v xα α  the 

fluid velocity, ( )p p xα=  is pressure, the coefficients of 

viscosity 0µ > , the space coordinates xα and 

, {1, 2, 3}α β ∈ . The non-dimensionl quantities cE , eR  and 

rP  are the Eckert number, the Reynolds number, the Prandtl 

number respectively. 

For the two-dimensional Cartesian space case taking

, {1, 2}α β ∈ , 1x x= , 2x y= , 1 ( , )v u x y= , 2 ( , )v v x y= ,

3 0v = , 1 1( , )F F x y= , 2 2 ( , )F F x y= , 3 0F = in equations (1-

3) one finds 

xu + yv = 0                                      (4) 
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where e rR P  is the Peclet number eP ′ . 

The solution of the equation (4) is a stream function

( , )x yψ  such that 

u
y

ψ∂ =
∂

v
x

ψ∂ = −
∂

                              (8) 

The solutions of momentum and energy equations are 

there through dimension analysis methods and coordinates 

transformation techniques [1-6]. For solution of these 

equations when NSE includes body force some 

transformations technique are applied [7-10]. Further, 

solutions are there for very small and very large eP ′ where as 

the solution with intermediate eP ′  is challenging[11-14]. This 

communicationapplies successive transformation scheme to 

meet the challenge of moderate eP ′ . According to this scheme 

the basic non-dimensional flows equations with body force in 

Cartesian space ( , )x y  are first transformed into Martin’s 

coordinates ( ),φ ψ  then to von-Mises coordinates ( , )x ψ . In 

Martin’s coordinates, the curvilinear coordinates ( ),φ ψ  are 

such that the coordinate lines .constψ =  are streamlines and 

the coordinate lines constantφ = are arbitrary [15]. Whereas 

in the von-Mises coordinates, the arbitrary coordinate lines of 

Martin’s system is taken along the x axis− . Thus, the 

function xφ =  and stream function ψ  of Martin’s 

coordinates as independent variables instead of y  and x  

[16]. Further, the characterization of the streamlines is 

through 

( ) const.y f x− =                            (9) 

where ( )f x is a differentiable function and const.ψ =  are the 

streamlines. Therefore, it is reasonable to take 

( ) ( )y f x ν ψ= +                           (10) 

withν as a differentiable function of stream function ψ . 

The paper is organized as follow: Section (2) shows 

transformation of basic equations into Martin’s coordinates

( , )φ ψ . Section (3) retransforms equations from Martin’s 

systemto von-Mises coordinates ( , )x ψ . Section (4), 

calculates exact solutions in von-Mises coordinates. Last 

sectionpresents conclusions. 

2. Basic Equations to Martin’s System 

Let us write the equations (5-7) to a convenient form, before 

transforming to Martin’s coordinates, in terms of the vorticity 

function Ω  and the total energy function xT  defined by 

Ω = xv − yu                                   (11) 
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where 

A  = ( )y xu vµ + B = 4 xuµ                   (16) 

Let us consider the following allowable change of 

curvilinear coordinates ( , )φ ψ  through 

( , )x x φ ψ= , ( , )y y φ ψ=                       (17) 
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such that the Jacobian
( , )

( , )

x y
J

φ ψ
∂=
∂

of the transformation is 

non-zero and finite. Let ξ  be the angle between the tangents 

to the streamlines .constψ =  and the curves .constφ =  at a 

common point ( , )P x y , basic equations in Martin’s system 

are following [17] 
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where 

E  = 2 2x yφ φ+ , 

F  = xφ xψ + yφ yψ , 

G  = ( xψ )
2
 + ( yψ )

2
                          (21) 

are the coefficients of first fundamental form and 

J  = ± 2E G F−                            (22) 
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3
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3. Retransformation to von-Mises 

Coordinates 

Since xφ =  is independent variable in von-Mises 
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coordinates, thereforesetting 

xφ =                                            (26) 

in equations (21-22), one have 

21 [ ( )]E x f x′= +                                  (27) 

F = 1J E −                                      (28) 
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2x ( )ν ψ′ 2

                                  (29) 

J = x ( )ν ψ′                                     (30) 
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1
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Thus equations (18-20), equation (25) and equations (23-

24) are 
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( , )B x ψ  = 4µ
3

1

J
 [ xJ J− + 1E − Jψ ]              (37) 

and q the magnitude of q ( , )u v=  is 

E
q

J
=                                       (38) 

4. Exact Solutions in von-Mises 

Coordinates 

Follow [1-3], the condition x xL Lψ ψ=  on equations (29-

30) provides 

x xx Aν ′ – 2 xx f A ψ′ – 

2 21 ( )x f
A

x
ψψν

 ′− 
′

 

+ xAν ′ – ( )A f x fψ ′ ′′+ – x

f B
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= e xR Ω  + ( )1 2eR F F x f ψ
′+ ( )2e x

R x Fν ′−          (39) 

The solution of equation (39) is expected to lead to the 

exact solution therefore let us simplify Ω  involved in the 

right-hand side of it through 

2dν ν′′ ′=                                         (40) 

where d is constant. The case for 0d = is considered 

separately. For 0d ≠  equation (40)gives 

1 2

1 1
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( )d d k k
ν

ψ
 −=  + 

                             (41) 

where 1k  and 2k  are constants. Equations (35-37) using (40) 

implies 
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 ′ 

2

2

(1 )N c N

x x
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A =
2

x

µ
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[ ( )22 1x N N d N′ − − − ]                    (43) 

and 

[ ]
2

4
1B d N

x

µ
ν

= − +
′

                              (44) 

Where 

( ) ( )N x x f x′=                                (45) 

Let us attempt solutions of equation (39) by eliminating µ  

from equations (43-44) and introducing function ( )Y x  
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through 

A = ( )Y x B                                  (46) 

where 

22 (1 )
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x N N d N
Y x
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− +

                  (47) 
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The use of (41) and (46) in the equation (34)involves 

factor 1 eP
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 therefore, this guides to searchthe function B  
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where the function ( )R x  is to be determined. Equation (48) 

on utilizing equation (49)gives 
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The search for the appropriate form of 1F  and 2F providing 

the solution of equations (32-34) leads to 2 2( , ) ( )F x F xψ = as 

a solution of the following differential equation 
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R a x F x Y R

′ ′= −                        (51) 
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Substitution of equations (52–53) in equations (32–33) 

provides the function L  
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where 2h  is constant and thus equation(43) or equation (44) 

provides 
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x
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R x
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The equation (34) on using (27), (40), (46), (49) and (55) 

becomes 

( ) x xx Tν ′ 2 N− xTν ν ′ +
2(1 )
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N

T
x
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The right-hand side of equation (56) suggestssearching for 

its solution of the type 

( )
( , )

K x
T x ν

ν
=

′
                                    (57) 

where ( )K x  is unknown function to be determined. 

Utilization of equation (57) in equation (56), provides 
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x K ′′ 2 d N K ′+ +
2 2(1 )d N K

x
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+ 1 eP
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Comparing the coefficient of 1 eP

ν
′ − ′ 

 on both side of 

equation (58), one finds 
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− + +
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Equation (59) and (60) are coupled equations, the function 

( )K x  from equation (60) will lead to ( )R x  from equation 

(59) and the solution of equation (60) can be found for a 

choice of ( )f x . For example considering 1 2( ) lnf x m x m= +  

it reduces to Cauchy-Euler equation, when 

3 4

1
( ) ln cos ( ln )f x m d x m

d
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is applicable and when
2

( ) ln
2
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f x d x

d
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solvable by transforming to normal form. For other ( )f x , 

the solution of variable coefficient differential equation (60) 

is easy to find from computer algebra system (CAS) 

software. This leads to T from equation (57), µ  from 

equation (55), p  from (12) using equation (54) and 

q ( , )u v=  from equation (8) for 1F  and 2F  from equations 

(52-53) for intermediate Peclet number. 

When ( ) 0Y x = , the equation (47) implies 
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Since 0d ≠ therefore solution of equation (61) for 1d =  
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0A =                                        (64) 
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Our search for the appropriate form of 1F  and 2F  

providing the solution of equations (32-34) leads to 
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equation 
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or 
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where 1( )H x is a function of integration. Solving (32-33), 

using equations (67-68), we have 

1 3( ) ( )eR L B G d H x dx hψ ψ= − − + +∫ ∫         (69) 

where 3h  is constant. 

In light of equation (64), the equation (34)becomes 

2

2

(1 )
2 1

4

e
x x x x

c r

PN
x T N T T T

x

x E P B
N T

ν νν

ν

ν

µ

′+  − + + − ′ 

′− = −
          (70) 

The function B  from equation (70) in equation (44) gives 

a relation between viscosity andtemperature function 

( )

2

3 2

2

2

(1 )

( )

4 1
1

x x x

ec r
x

x T N T

N
T

x x

PE P d N
T

N T

ν

νν

ν

νµ

ν
′

− 
 

+ + ′−
 =
 −  + −  ′  
 ′− 

          (71) 

The streamline patterns can be drawn using CAS software 

to observe the effect of various parameters for d  either ve+
or ve− . 
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5. Conclusion 

This communication finds a class of new exact solutions of 

the equations governing the two-dimensional steady motion 

with moderate Peclet number of incompressible fluid of 

variable viscosity in presence of body force in von-Mises 

coordinates. The characteristic equation for the streamlinesis 

the equation 
1 2

1 1
( ) ln

( )
y f x

d d k kψ
 −= +  + 

where the 

differentiable function ( )f x is either

( )2 1( ) ln cosh 2 ( ln )f x c x c x = + −
 

or ( )2 1( ) ln cosh 2 ( ln )f x c x c x = − +
 

, 

ψ is the stream function and the constants d is either ve+ or 

ve− . The pressure p  and velocity components for given the 

component of body force 1F  or 2F are found when Peclet 

number is moderate and a relation between viscosity µ  and 

temperature function T  is observed. For other ( )f x  in 

streamlines equation, temperature, viscosity, pressure and 

velocity components for given component of body force are 

found for moderate Peclet number. It shows that in both the 

cases an infinite set of velocity components, viscosity 

function, generalized energy function and temperature 

distribution for intermediatePeclet number in presence of 

body force can be constructed and graph of streamlines using 

CAS software can be drawn to observe the streamline 

patterns. 
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